

Workshop on Computational Ab *initio* Quantum Thermodynamics

- 3. Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY

Discovery Environment

ACCESS Advancing Innovation

Qi Zhang¹, Renata Wentzcovitch^{1,2,3}

Nov. 28 – Dec. 1, 2022

1. Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 2. Department of Earth and Environmental Sciences, Columbia University, New York, NY

http://www.mineralscloud.com/resources/

C. R. S. da Silva et al. Virtual laboratory for planetary materials: System service architecture overview. Phys Earth Planet In. 163, 321–332 (2007).

Publications

- The Virtual Laboratory for Earth and Planetary Materials (VLab), was funded by the NSF in 2004 at the Minnesota Supercomputing Institute, University of Minnesota.
- VLab is a cyberinfrastructure consisting a fully integrated web portal, web services, and databases for *ab initio* calculations of planetary materials.

2

Code O Issues	press.jl Public 이 이 모 Discussion	ns 🕞 Actions 🖽 Projects	🖽 Wiki 🕕 Security	l∠ Insights இ Se	ttings
	master - P 6 branches © 24 tag github-actions[bot] Set version to 0.6. github docs src	gs 8 Fix .github/dependabot.yml Fix @repl to julia-repl in docs Fix myuparse again	Go to file Add file	 Code - 2,370 commits 9 days ago 28 days ago 9 days ago 	About extensible, lightweight, high-throughput, high-level workflow framework that aims to automate ab initio calculations for the materials science community mineralscloud.github.io/express.jl/ geophysics materials-science
	Express: an extens high-level workflow initio calculations	ible, lightweight, v framework that	high-throughp aims to autom	out, hate ab	Packages No packages published Publish your first package Contributors (a) (a) singularitti Reno (a) github-actions[bot] (a) searchengineorientprogramming 0 (b) restyled-commits Restyled Commits Environments (a) (a) github-pages (Active) Languages (a) Julia 100.0%

Access our code

<> Code (Issues) Provide the Releases Tags	ull requests 1 🖓 Discussions 🕑 Act
Jul 12 github-actions v0.9.0	v0.9.0 Latest
-O- 19e1eeb ⊘	Express V0.9.0
	Diff since v0.8.0
	 CompatHelper: bump compat Rename operators as in Minera Use JLD2 in EquationOfStat Update docs (#224) (@singula)
	Contributors
	singularitti and github-actions
	▼Assets 2
	Source code (zip)
	Source code (tar.gz)
Jul 7 () github-actions	v0.8.0
♡ v0.8.0 -0- 994c6c8 ⊘	Express v0.8.0
Compare 💌	Diff since v0.7.2

Follow our latest releases

			•	 Wate 	ch 2 ▼	ဗု	Fork 1	•	*	Starred	11
ns	🗄 Projects	🕮 Wiki	!	Security	🗠 Insig	phts	段 Sett	ings			
				Draf	t a new rele	ease	Q Fir	nd a rel	ease		
										0 1	i
Sir	npleWorkflow	/s to 0.16, (k	ceep e	existing	compat) (#	#221)	(@githu	b-acti	ons[t	pot])	
Sir lou `kı i)	npleWorkflow ud/SimpleWo flow instead	/s to 0.16, (k rkflows.jl#12 of stdlib Se	ceep e 29 (#2 erial:	existing o 222) (@s ization	compat) (# singularitt (#223) (@	‡221) <mark>i</mark>) ⊅sing	(@githu <mark>ularitti</mark>)	b-acti	ons[t	oot])	
Sir lo kı i)	npleWorkflow ud/SimpleWo flow instead	/s to 0.16, (k rkflows.jl#12 of stdlib Se	ceep e 29 (#2 erial:	existing o 222) (@s ization	compat) (# singularitt (#223) (@	‡221) <mark>i</mark>) ⊅sing	(@githu <mark>ularitti</mark>)	b-acti	ons[t	pot])	
Sir lo cki	npleWorkflow ud/SimpleWo flow instead	/s to 0.16, (k rkflows.jl#12 of stdlib Se	ceep c 29 (#2 erial:	existing o 222) (@s ization	compat) (# singularitt (#223) (@	‡221) i) ⊉sing	(@githu <mark>ularitti</mark>)	b-acti	ons[b	pot])	
Sir kı	npleWorkflow ud/SimpleWo flow instead	/s to 0.16, (k rkflows.jl#12 of stdlib Se	ceep 6 29 (#2 erial:	existing o 222) (@s ization	compat) (# singularitt (#223) (@	≠221) i) ⊅sing	(@githu <mark>ularitti</mark>)	b-acti	ons[t	pot])	
Sir rk ti)	npleWorkflow ud/SimpleWo flow instead	/s to 0.16, (k rkflows.jl#12 of stdlib Se	ceep e 29 (#2 erial:	existing o 222) (@s ization	compat) (# singularitt (#223) (@	‡221) <mark>i</mark>) ⊅sing	(@githu ularitti)	b-acti	ons[t	pot]) Jul 12	

🖉 បិ

Overview
 ☐ Repositories
 63
 ☐ Projects
 ⑦ Packages
 २२ Tear

README.md

Minerals Cloud

Follow @MineralsCloud 16 Contact Us

We are a research team at Columbia University in the City of New York. Our Princip research is devoted to computational quantum mechanical studies of materials at materials. We address electronic, structural, and vibrational properties from a func-

Our current research interests include:

- Mineral physics with applications to geophysics (seismology and geodynamics isotope fractionation in minerals)
- Materials discovery at (exo)planetary interior conditions
- H2O-ice physics
- Properties of strongly correlated oxides and their crystalline defects
- Spin crossover systems
- Simulations methods development

Latest Events

- Workshop on Computational Ab initio Quantum Thermodynamics (Nov. 28 --
- Bringing Research Excellence To Africa: Omololu Akin-Ojo
- Materials Simulations in Earth and Planetary Sciences Seminars
- International Workshop on Recent Developments in Electronic Structure Meth
- 2022 US-Africa Initiative in Electronic Structure Workshop

Latest Code Releases

- Express.jl v0.9.0 (Source Code, released 4 months ago)	- QuantumESPR 4 months ago)
- QuantumESPRESSOBase.jl v0.7.7 (Source Code, released 3 months ago)	- EquationsOfSt months ago)
 - qha Remove `seaborn` from deps (Source Code, released 3 weeks ago) 	- cij 1.0.0-b4 (So
- phq 1.0.0 released! (Source Code, released 3 years ago)	- SimpleWorkflo ago)
- CrystallographyBase.jl v0.7.0 (Source Code, released 3 months ago)	- EasyJobs.jl <mark>v0</mark> .

	Unfollow	
ineralscloud.github.io/ 날 @MineralsCloud 더 mineralsclou ms	udcu@gmail.com	
cipal Investigator is Renata M. Wentzcovitch. Our	 View as: Public - You are viewing the README and repositories as a public user. Get started with tasks that most successful organizations complete. 	
t extreme conditions, especially planetary ndamental and inter-related perspective.		
ics) and geochemistry (water speciation and	Top languages Julia Python Fortran TeX HTML	
- Dec. 1, 2022)	Most used topics Manage julia-package scientific-computing materials-science quantum-espresso	
hods (ES22)	ab-initio	
PRESSOExpress.jl v0.5.7 (Source Code, released		
StateOfSolids.jl v0.4.2 (Source Code, released 7		
Source Code, released 7 months ago)		
0.3.0 (Source Code, released 2 days ago)		

Computer Physics Communications Volume 282, January 2023, 108515

express: Extensible, high-level workflows for swifter *ab initio* materials modeling \bigstar , \bigstar

Qi Zhang ^a, Chaoxuan Gu ^a, Jingyi Zhuang ^{b, c}, Renata M. Wentzcovitch ^{a, b, c} 😤 🖾

Physics > Computational Physics

[Submitted on 24 Sep 2021]

express: extensible, high-level modeling

Qi Zhang (1), Chaoxuan Gu (1), Jingyi Zhuang (2 and 3), Renata M. Wentzcovitch (1 and 2 and 3) ((1) Department of

Access our paper

	Search
	Help Advanced
workflows for swifter <i>ab initio</i> n	naterials
nd 3) Repata M. Wentzcovitch (1 and 2 and 3) ((1) $[$	Department of

Details of the implementation

A high-level overview of the workflows

High-level schematic representation of the workflows. Each light-gray block denotes a workflow. A white block means the results obtained from a previous block. The cij block, colored as half-gray half-blue, is not currently contained in express but will be released in the near future.

Convergence test workflow

Schematic representation of the convergence test workflow.

Equation of state workflow

Legend

generate input
for each volum
a series of volumes

Visual depiction of the "parallel" implementation of the equation of state (EOS) workflow.

Graphical representation of the phonon workflow.

Phonon workflow

QHA workflow

Schematic representation of the QHA workflow.

Qin, T., Zhang, Q., Wentzcovitch, R. M. & Umemoto, K. qha: A Python package for quasiharmonic free energy calculation for multi-configuration systems. *Comput Phys Commun* **237**, 199–207 (2019).

Static elasticity block

Thermoelasticity workflow

C. Luo, X. Deng, W. Wang, G. Shukla, Z. Wu, R. M. Wentzcovitch, cij: A Python code for quasiharmonic thermoelasticity. *Computer Physics Communications*. **267**, 108067 (2021).

Schematic representation of the thermoelasticity workflow.

3. call cij code to calculate thermoelastic constants using Wu–Wentzcovitch semianalytical method

thermoelasticity block

Formula	Space Group
$NaAlSi_3O_8$	ΡĪ
$ m SiO_2$	$\mathrm{C}rac{2}{c}$
${\rm CaMgSi_2O_6}$	$\mathrm{C}rac{2}{c}$
$MgSiO_3$	Pbnm
${ m SiO}_2$	$\mathrm{P}rac{4_2}{m}\mathrm{nm}$
$MgSiO_3$	$R\bar{3}$
CaO	${ m Fm}{ar{3}}{ m m}$
Al_2O_3	$R\bar{3}c$
	Formula NaAlSi $_{3}O_{8}$ Si O_{2} CaMgSi $_{2}O_{6}$ MgSi O_{3} Si O_{2} MgSi O_{3} Ca O

	LDA	PBEsol	PBE
0	$O.pz-n-kjpaw_psl.0.1.UPF$	$O.pbesol-n-kjpaw_psl.1.0.0.UPF$	$O.pbe-n-kjpaw_psl.1.0.0.UPF$
Al	Al.pz-n-kjpaw_psl. $0.1.UPF$	$Al.pbesol-n-kjpaw_psl.1.0.0.UPF$	Al.pbe-n-kjpaw_psl.1.0.0.UPF
Ca	Ca-pz.vdb	$Ca.pbesol-spn-kjpaw_psl.1.0.0.UPF$	Ca.pbe-spn-kjpaw_psl.1.0.0.UPF
Mg	Mg.pz-spnl-kjpaw_psl.1.0.0.UPF	Mg.pbesol-spnl-kjpaw_psl. $1.0.0.UPF$	Mg.pbe-spnl-kjpaw_psl.1.0.0.UPF
Na	Na.pz-spn-kjpaw_psl.0.2.UPF	Na.pbesol-spn-kjpaw_psl.1.0.0.UPF	Na.pbe-spn-kjpaw_psl.1.0.0.UPF
Si	Si.pz-n-kjpaw_psl.0.1.UPF	Si.pbesol-n-kjpaw_psl.1.0.0.UPF	Si.pbe-n-kjpaw_psl.1.0.0.UPF

Material	Cutoff energy (Ry)		k-point mesh	q-mesh (DFPT)	q-mesh (sampling)	
	LDA	PBEsol	PBE			
Albite	200	90	130	$2 \times 2 \times 2$	$2 \times 2 \times 2$	$20 \times 20 \times 20$
Coesite	110	90	130	$4 \times 4 \times 4$	$2 \times 2 \times 2$	$20 \times 20 \times 20$
Diopside	180	90	130	$4 \times 4 \times 4$	$2 \times 2 \times 2$	$20 \times 20 \times 20$
Bridgmanite	150	150	130	$6 \times 6 \times 4$	$2 \times 2 \times 2$	$20 \times 20 \times 20$
Stishovite	170	80	80	$4 \times 4 \times 6$	$2 \times 2 \times 4$	$30 \times 30 \times 30$
Akimotoite	170	90	120	$4 \times 4 \times 4$	$4 \times 4 \times 4$	$20 \times 20 \times 20$
Lime	80	80	120	$4 \times 4 \times 4$	$4 \times 4 \times 4$	$30 \times 30 \times 30$
Corundum	130	130	130	$4 \times 4 \times 4$	$4 \times 4 \times 4$	$20 \times 20 \times 20$

Crystal systems

Comparisons between calculated and experimental parameters V₀ at 300 K for the investigated materials, fitted by third-order Birch–Murnaghan equations of state.

Results: equation of state at 300K (B_0)

Comparisons between calculated and experimental parameters B₀ at 300 K for the investigated materials, fitted by third-order Birch–Murnaghan equations of state.

Results: equation of state at 300K (B'_0)

Comparisons between calculated and experimental parameters B'₀ at 300 K for the investigated materials, fitted by third-order Birch–Murnaghan equations of state.

Results: thermal expansion coefficient

- C. Su et al., Mineral-basel. 11, 1322 (2021).
- D. G. Isaak, I. Ohno, P. C. Lee, Phys Chem Miner. 32, 691–699 (2006).
- G. L. Hovis et al., Am Mineral. 106, 883–899 (2021).
- Saxena SK, Chatterjee N, Fei Y, Shen G (1993) Thermodynamic data on oxides and silicates. Springer, Berlin Heidelberg New York, pp 168–169

Results: specific heat

- P. Richet, G. Fiqu (1991).
- S. K. Saxena, G. 19813 (1992).
- Dorogokupets, P. I., E. M. Ponomarev, and E. A. Melekhova. *PETROLOGY C/C OF PETROLOGIIA* 7.6 (1999): 574-591.
- M. Akaogi, M. Oohata, H. Kojitani, H. Kawaji, American Mineralogist. 96, 1325–1330 (2011).
- M. Akaogi, H. Yusa, K. Shiraishi, T. Suzuki, J. Geophys. Res. 100, 22337–22347 (1995).
- J. L. Holm, O. J. Kleppa, E. F. Westrum, Geochimica et Cosmochimica Acta. 31, 2289–2307 (1967).
- <u>C. Lee, X. Gonze, Phys. Rev. B. 51, 8610–8613 (1995).</u>
- <u>).</u>

• P. Richet, G. Fiquet, J. Geophys. Res. 96, 445

• S. K. Saxena, G. Shen, J. Geophys. Res. 97,

- C. Su et al., Mineral-basel. **11**, 1322 (2021).
- D. G. Isaak, I. Ohno, P. C. Lee, Phys Chem Miner. 32, 691–699 (2006).
- G. L. Hovis et al., Am Mineral. 106, 883–899 (2021).
- Saxena SK, Chatterjee N, Fei Y, Shen G (1993) Thermodynamic data on oxides and silicates. Springer, Berlin Heidelberg New York, pp 168–169

express implements 3 common user interfaces

Code deployment on different environments

virtual machines or (Docker) containers

local PCs

remote servers

multiple environments

Graph-based workflow model

- Each action (make input, run QE, read output, etc.) is a Node in the DAG representation of the workflow
- Each Node tracks the status and other metadata (time, result, etc.) of the action
- The status of the workflow is saved to a file while running, interrupted/failed actions can be rerun after restarting/fixing
 Workflows can be stored in a database for
 - future reference

Components of the express project

EOS workflow input files

- A config file
 - Desired pressures for optimization
 - A trial equation of state
 - Computational settings
- A QE template input for SCF

recipe: eos cli: mpi: np: 16 pw: path: ~/bin/pw.x template: template.in save: status: status.jls fixed: pressures: unit GPa values: - -5 - -2 - 0 - 5 - 10 - 15 - 17 - 20 trial_eos: type: bm3 values: - 300.44 bohr^3 - 74.88 GPa - 4.82

```
&control
calculation='scf'
pseudo_dir = './pseudo'
prefix='Ge'
outdir = './'
&system
ibrav=2
celldm(1)=7.957636
nat=2
ntyp=1
ecutwfc = 55
&electrons
conv_thr=1.0d-10
ATOMIC_SPECIES
              Ge.pz-dn-kjpaw_psl.0.2.2.UPF
     72.64
ATOMIC_POSITIONS (crystal)
Ge 0.00000
                0.00000
                           0.00000
                0.75000
    0.75000
                          0.75000
Ge
K_POINTS automatic
666111
```

EOS workflow output files

- SCF and vc-relax inputs and outputs for each pressure
- Fitted equations of state
- E(V) raw data for SCF and vcrelax
- Tracked running status of each job in the workflow

eos.in

eos.yaml

After

p=-1.0

p=30.0

raw.jsor

p=0.0

temp project

saved.ild

disp.ir

eos.jld2

p = 15.0

p=20.0

a2r.in

vdos.tom

ph.in

Phonon workflow input files

- A config file
 - Desired pressures
 - Computational settings
- QE template input files for SCF, DFPT, force constant calculations, phonon dispersion calculations

```
recipe: vdos
cli:
 mpi:
    np: 16
template:
 scf: ../examples/Ge/template.in
 dfpt: ../examples/Ge/ph.in
 q2r: ../examples/Ge/q2r.in
 disp: ../examples/Ge/disp.in
save:
 status: status.jld2
fixed:
  pressures:
    unit: GPa
    values:
      - -5
      - -2
      - 0
      - 5
      - 10
      - 15
      - 17
      - 20
```


Phonon workflow output files

- SCF, DFPT, force constant calculations', phonon dispersion calculations' inputs and outputs for each pressure
- Tracked running status of each job in the workflow

raw.jsor

p=20.0

p=25.0

fc.out

QHA workflow input files

- QE output of phonon frequencies from the phonon workflow
- Q-points
- Static E(V) relations on each desired pressure

comment: Si calculated by Quantum ESPRESSO formula_unit_number: 2 frequency_files:

- ../examples/silicon/V+5.freq
- ../examples/silicon/V+4.freq
- ../examples/silicon/V+3.freq
- ../examples/silicon/V+2.freq
- ../examples/silicon/V+1.freq
- ../examples/silicon/V0.freq
- ../examples/silicon/V-1.freq
- ../examples/silicon/V-2.freq
- ../examples/silicon/V-3.freq
- ../examples/silicon/V-4.freq
- ../examples/silicon/V-5.freq

0.0000000	0.0000000	0.0000000	0.0092593
-0.1666667	0.1666667	-0.1666667	0.0740741
-0.3333333	0.3333333	-0.33333333	0.0740741
0.5000000	-0.5000000	0.5000000	0.0370370
0.0000000	0.33333333	0.0000000	0.0555556
-0.1666667	0.5000000	-0.1666667	0.2222222
0.6666667	-0.33333333	0.66666667	0.2222222
0.5000000	-0.1666667	0.5000000	0.2222222
0.3333333	0.0000000	0.3333333	0.1111111
0.0000000	0.6666667	0.0000000	0.0555556
0.8333333	-0.1666667	0.8333333	0.2222222
0.6666667	-0.0000000	0.6666667	0.1111111
0.0000000	-1.0000000	0.0000000	0.0277778
0.6666667	-0.33333333	1.0000000	0.2222222
0.5000000	-0.1666667	0.8333333	0.2222222
-0.33333333	-1.0000000	0.0000000	0.1111111

P=	-93.46	V=	320.5259	E=	-15.72569834
P=	-80.32	V=	311.4549	E=	-15.73098435
P=	-64.79	V=	302.5568	E=	-15.73530702
P=	-46.61	V=	293.8297	E=	-15.73854690
P=	-25.53	V=	285.2721	E=	-15.74057452
P=	-1.21	V=	276.8823	E=	-15.74126586
P=	26.68	V=	268.6586	E=	-15.74048328
P=	58.52	V=	260.5994	E=	-15.73807360
P=	94.69	V=	252.7030	E=	-15.73387649
P=	135.65	V=	244.9677	E=	-15.72772377
P=	181.94	V=	237.3920	E=	-15.71945542

QHA workflow output files

- Output
- Input for the qha code
- Thermodynamic properties as functions of (T, V) and (T, P)
- Plots of these thermodynamic properties

Slurm commands

- srun --partition=debug --pty --account=coll46 -wait=0 --export=ALL zsh
- squeue --me

nodes=1 --ntasks-per-node=112 --mem=128G -t 00:30:00 --

Summary

Therefore, we made a software that

- is easy to use. Users can rely on these highly-customizable workflows with different ab *initio* software while writing little to no code.
- can calculate multiple thermodynamic and thermoelastic properties on various materials \bullet with ab initio methods.

(XSEDE).

This work was supported by DOE. This work used the Extreme Science and Engineering Discovery Environment

References

- M. Akaogi, M. Oohata, H. Kojitani, H. Kawaji, American Mineralogist. 96, 1325–1330 (2011).
- M. Akaogi, H. Yusa, K. Shiraishi, T. Suzuki, J. Geophys. Res. 100, 22337–22347 (1995).
- J. L. Holm, O. J. Kleppa, E. F. Westrum, Geochimica et Cosmochimica Acta. 31, 2289– 2307 (1967).
- C. Lee, X. Gonze, Phys. Rev. B. 51, 8610–8613 (1995).
- P. Richet, G. Fiquet, J. Geophys. Res. 96, 445 (1991).
- S. K. Saxena, G. Shen, J. Geophys. Res. 97, 19813 (1992).
- Dorogokupets, P. I., E. M. Ponomarev, and E. A. Melekhova. PETROLOGY C/C OF PETROLOGIIA 7.6 (1999): 574-591.P. Richet, G. Fiquet, *J. Geophys. Res.* 96, 445 (1991).